Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Infect Control Hosp Epidemiol ; : 1-4, 2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-20233696

ABSTRACT

Barriers are commonly installed in workplace situations where physical distancing cannot be maintained, but their effectiveness in decreasing viral transmission is unknown. In simulations, physical barriers with no openings were effective in reducing contamination with an aerosolized benign virus or fluorescent microspheres, but barriers with openings were not.

2.
Infect Control Hosp Epidemiol ; : 1-3, 2022 Mar 28.
Article in English | MEDLINE | ID: covidwho-2323498

ABSTRACT

A novel 1-step anionic surfactant disinfectant was effective against Candida auris isolates from the 4 major phylogenetic clades as well as methicillin-resistant Staphylococcus aureus (MRSA) and the enveloped virus bacteriophage Phi6. This anionic surfactant disinfectant may be a useful addition to the disinfectant products available for use against C. auris.

4.
Infect Control Hosp Epidemiol ; : 1-3, 2022 Jan 31.
Article in English | MEDLINE | ID: covidwho-2292798

ABSTRACT

In an unventilated room, 2 commercial portable air cleaners with high efficiency particulate air (HEPA) filters and a do-it-yourself box fan air cleaner with minimum efficiency reporting value (MERV)-13 filters significantly reduced aerosolized bacteriophage MS2. Increasing airflow and addition of ultraviolet-C light plus titanium dioxide-generated photocatalytic oxidation enhanced viral clearance.

5.
Infect Control Hosp Epidemiol ; : 1-3, 2021 Oct 18.
Article in English | MEDLINE | ID: covidwho-2248979

ABSTRACT

For 40 patients with methicillin-resistant Staphylococcus aureus (MRSA) colonization, fist bump and elbow bump greetings resulted in frequent transfer of MRSA (25% vs 15%, respectively), but significantly fewer colonies were transferred via the elbow bump. Noncontact greetings should be encouraged to reduce the risk of transfer of healthcare-associated pathogens.

6.
Pathog Immun ; 5(1): 133-142, 2020.
Article in English | MEDLINE | ID: covidwho-2253465

ABSTRACT

BACKGROUND: Contaminated surfaces are a potential source for spread of respiratory viruses including SARS-CoV-2. Ultraviolet-C (UV-C) light is effective against RNA and DNA viruses and could be useful for decontamination of high-touch fomites that are shared by multiple users. METHODS: A modification of the American Society for Testing and Materials standard quantitative carrier disk test method (ASTM E-2197-11) was used to examine the effectiveness of UV-C light for rapid decontamination of plastic airport security bins inoculated at 3 sites with methicillin-resistant Staphylococcus aureus (MRSA) and bacteriophages MS2, PhiX174, and Phi6, an enveloped RNA virus used as a surrogate for coronaviruses. Reductions of 3 log10 on inoculated plastic bins were considered effective for decontamination. RESULTS: UV-C light administered as 10-, 20-, or 30-second cycles in proximity to a plastic bin reduced contamination on each of the test sites, including vertical and horizontal surfaces. The 30-second cycle met criteria for decontamination of all 3 test sites for all the test organisms except bacteriophage MS2 which was reduced by greater than 2 log10 PFU at each site. CONCLUSIONS: UV-C light is an attractive technology for rapid decontamination of airport security bins. Further work is needed to evaluate the utility of UV-C light in real-world settings and to develop methods to provide automated movement of bins through a UV-C decontamination process.

7.
Infect Control Hosp Epidemiol ; : 1-7, 2022 Feb 22.
Article in English | MEDLINE | ID: covidwho-2264911

ABSTRACT

OBJECTIVE: To investigate a cluster of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in employees working on 1 floor of a hospital administration building. METHODS: Contact tracing was performed to identify potential exposures and all employees were tested for SARS-CoV-2. Whole-genome sequencing was performed to determine the relatedness of SARS-CoV-2 samples from infected personnel and from control cases in the healthcare system with coronavirus disease 2019 (COVID-19) during the same period. Carbon dioxide levels were measured during a workday to assess adequacy of ventilation; readings >800 parts per million (ppm) were considered an indication of suboptimal ventilation. To assess the potential for airborne transmission, DNA-barcoded aerosols were released, and real-time polymerase chain reaction was used to quantify particles recovered from air samples in multiple locations. RESULTS: Between December 22, 2020, and January 8, 2021, 17 coworkers tested positive for SARS-CoV-2, including 13 symptomatic and 4 asymptomatic individuals. Of the 5 cluster SARS-CoV-2 samples sequenced, 3 were genetically related, but these employees denied higher-risk contacts with one another. None of the sequences from the cluster were genetically related to the 17 control sequences of SARS-CoV-2. Carbon dioxide levels increased during a workday but never exceeded 800 ppm. DNA-barcoded aerosol particles were dispersed from the sites of release to locations throughout the floor; 20% of air samples had >1 log10 particles. CONCLUSIONS: In a hospital administration building outbreak, sequencing of SARS-CoV-2 confirmed transmission among coworkers. Transmission occurred despite the absence of higher-risk exposures and in a setting with adequate ventilation based on monitoring of carbon dioxide levels.

8.
Ann Biomed Eng ; 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-2257378

ABSTRACT

Face masks have been proven to be medicine's best public health tool for preventing transmission of airborne pathogens. However, in situations with continuous exposure, lower quality and "do-it-yourself" face masks cannot provide adequate protection against pathogens, especially when mishandled. In addition, the use of multiple face masks each day places a strain on personal protective equipment (PPE) supply and is not environmentally sustainable. Therefore, there is a significant clinical and commercial need for a reusable, pathogen-inactivating face mask. Herein, we propose adding quaternary poly(dimethylaminohexadecyl methacrylate), q(PDMAHDM), abbreviated to q(PDM), to existing fabric networks to generate "contact-killing" face masks-effectively turning cotton, polypropylene, and polyester into pathogen resistant materials. It was found that q(PDM)-integrated face masks were able to inactivate both Gram-positive and Gram-negative bacteria in liquid culture and aerosolized droplets. Furthermore, q(PDM) was electrospun into homogeneous polymer fibers, which makes the polymer practical for low-cost, scaled-up production.

9.
Pathog Immun ; 7(2): 120-130, 2022.
Article in English | MEDLINE | ID: covidwho-2204734

ABSTRACT

Background: Inadequate ventilation may contribute to the high risk for household transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We evaluated the effectiveness of several interventions recommended to improve ventilation in households. In 7 residential homes, carbon dioxide monitoring was conducted to assess ventilation in occupied open areas such as family rooms and in bedrooms and/or offices. Carbon dioxide levels above 800 parts per million (ppm) were considered an indicator of suboptimal ventilation for the number of people present. In 1 of the 7 homes, various interventions to improve ventilation or to filter air were assessed in a kitchen area by measuring clearance of aerosol particles produced using an aerosol-based spray system and carbon dioxide generated by cooking with a gas stove. Results: Carbon dioxide levels rose above 800 ppm in bedrooms and offices with 2 occupants when windows and doors were closed and in open areas during gatherings of 5 to 10 people; carbon dioxide levels decreased when windows or doors were opened. Clearance of carbon dioxide and aerosol particles significantly increased with interventions including running fans, operating portable air cleaners, and opening windows, particularly when there was a noticeable breeze or when a window fan was used to blow contaminated air outside. Conclusion: In households, several measures to improve ventilation or air filtration were effective in reducing carbon dioxide accumulation or enhancing clearance of carbon dioxide and aerosol particles. Studies are needed to determine if interventions to improve ventilation can reduce the risk for airborne transmission of SARS-CoV-2 in households.

11.
Pathog Immun ; 7(2): 66-77, 2022.
Article in English | MEDLINE | ID: covidwho-2119203

ABSTRACT

Reprinted with permission, Cleveland Clinic Foundation ©2022. All Rights Reserved. Background: Barriers are commonly installed in workplace situations where physical distancing cannot be maintained to reduce the risk for transmission of respiratory viruses. Although some types of barriers have been shown to reduce exposure to aerosols in laboratory-based testing, limited information is available on the efficacy of barriers in real-world settings. Methods: In an acute care hospital, we tested the effectiveness of in-use plexiglass barriers in reducing exposure of staff to aerosolized particles. A nebulizer was used to release 5% NaCl aerosol 1 meter from staff members with and without the barrier positioned between the point of aerosol release and the hospital staff. Particle counts on the staff side of the barrier were measured using a 6-channel particle counter. A condensed moisture (fog) generating device was used to visualize the airflow patterns. Results: Of 13 in-use barriers tested, 6 (46%) significantly reduced aerosol particle counts detected behind the barrier, 6 (46%) reduced particle counts to a modest, non-significant degree, and 1 (8%) significantly increased particle counts behind the barrier. Condensed moisture fog accumulated in the area where staff were seated behind the barrier that increased particle exposure, but not behind the other barriers. After repositioning the ineffective barrier, the condensed moisture fog no longer accumulated behind the barrier and aerosol exposure was reduced. Conclusion: In real-world settings, plexiglass barriers vary widely in effectiveness in reducing staff exposure to aerosols, and some barriers may increase risk for exposure if not positioned correctly. Devices that visualize airflow patterns may be useful as simple tools to assess barriers.

12.
Pathog Immun ; 7(1): 19-30, 2022.
Article in English | MEDLINE | ID: covidwho-1836202

ABSTRACT

BACKGROUND: Poorly ventilated enclosed spaces pose a risk for airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses. Limited information is available on ventilation in motor vehicles under differing driving conditions. METHODS: We conducted carbon dioxide measurements to assess ventilation in motor vehicles under varying driving conditions with 2 to 3 vehicle occupants. During routine driving, carbon dioxide produced by the breathing of vehicle occupants was measured inside 5 cars and a van under a variety of driving conditions with or without the ventilation fan on and with windows open or closed. Carbon dioxide readings above 800 parts per million (ppm) were considered an indicator of suboptimal ventilation. RESULTS: Carbon dioxide levels remained below 800 ppm in all vehicles if the ventilation fan was on and/or the windows were open while parked or during city or highway driving. With the ventilation system set on non-recirculation mode, carbon dioxide levels rose above 800 ppm in all vehicles when the fan was off and the windows were closed while parked and during city driving, and in 2 of the 6 vehicles during highway driving. With the ventilation system set on recirculation mode, carbon dioxide rose above 800 ppm within 10 minutes in all vehicles tested. CONCLUSION: Carbon dioxide measurements could provide a practical and rapid method to assess ventilation in motor vehicles. Simple measures such as opening windows, turning on the fan, and avoiding the recirculation mode greatly improve ventilation.

13.
Clin Infect Dis ; 2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1816046

ABSTRACT

BACKGROUND: Hospitalized patients are at risk to acquire severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from roommates with unrecognized coronavirus disease 2019 (COVID-19). We hypothesized that airflow patterns might contribute to SARS-CoV-2 transmission in double occupancy patient rooms. METHODS: A device emitting condensed moisture was used to identify airflow patterns in double occupancy patient rooms. Simulations were conducted to assess transfer of fluorescent microspheres, 5% sodium chloride aerosol, and aerosolized bacteriophage MS2 between patient beds 3 meters apart and to assess the effectiveness of privacy curtains and portable air cleaners in reducing transfer. RESULTS: Air flowed from inlet vents in the center of the room to an outlet vent near the door, resulting in air currents flowing toward the bed adjacent to the outlet vent. Fluorescent microspheres (212-250 µm diameter), 5% sodium chloride aerosol, and aerosolized bacteriophage MS2 released from the inner bed were carried on air currents toward the bed adjacent to the outlet vent. Closing curtains between the patient beds reduced transfer of each of the particles. Operation of a portable air cleaner reduced aerosol transfer to the bed adjacent to the outlet vent but did not offer a benefit over closing the curtains alone, and in some situations resulted in an increase in aerosol exposure. CONCLUSION: Airflow patterns in double occupancy patient rooms may contribute to risk for transmission of SARS-CoV-2 between roommates. Keeping curtains closed between beds may be beneficial in reducing risk.

15.
Pathogens & immunity ; 7(1):31-40, 2022.
Article in English | EuropePMC | ID: covidwho-1749321

ABSTRACT

Background: Travel poses a risk for transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory viruses. Poorly ventilated indoor settings pose a particularly high risk for transmission. Methods: We used carbon dioxide measurements to assess adequacy of ventilation during 5 trips that included air travel. During selected parts of each trip that involved indoor settings, we monitored carbon dioxide levels every 1 minute and recorded peak levels and the number of people present. Carbon dioxide readings above 800 parts per million (ppm) were considered an indicator of suboptimal ventilation. Results: Carbon dioxide levels remained below 800 ppm during train rides to and from the airport and inside airports except in a crowded boarding area with ~300 people present. Carbon dioxide levels exceeded 800 ppm inside the airplanes, but the air was filtered with high efficiency particulate air filters. Carbon dioxide levels remained below 800 ppm in common areas of a hotel but exceeded 800 ppm in a hotel room with 2 to 3 occupants and in a fitness center with 3 people exercising. In restaurants, carbon dioxide levels increased above 800 ppm during crowded conditions with 24 or more people present and 75% or more seat occupancy. Conclusion: Our results suggest that ventilation may be sufficient to minimize the risk for airborne transmission in many situations during travel. However, ventilation may be suboptimal in some areas or under certain conditions such as in hotel rooms or when restaurants, fitness centers, or airplane boarding areas are crowded. There is a need for larger scale studies to assess the quality of ventilation in a wide range of community settings.

16.
Clin Infect Dis ; 74(2): 339-342, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1722257

ABSTRACT

We report 2 episodes of potential SARS-CoV-2 transmission from infected van drivers to passengers despite masking and physical distancing. Whole-genome sequencing confirmed relatedness of driver and passenger SARS-CoV-2. With the heater operating, fluorescent microspheres were transported by airflow >3 meters from the front to the back of the van.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Physical Distancing , Whole Genome Sequencing
18.
Am J Infect Control ; 50(2): 229-232, 2022 02.
Article in English | MEDLINE | ID: covidwho-1536409

ABSTRACT

Poorly ventilated indoor spaces pose a risk for airborne transmission of SARS-CoV-2. We measured carbon dioxide levels in a multiple areas in an acute care hospital to assess the adequacy of ventilation. Carbon dioxide levels remained below 800 parts per million in most areas but exceeded this level in a small conference room with 8 occupants, an office with 3 occupants, and a bathroom with 2 occupants. Measuring carbon dioxide levels could provide a simple means for healthcare facilities to assess the adequacy of ventilation.


Subject(s)
Air Pollution, Indoor , COVID-19 , Air Pollution, Indoor/analysis , Carbon Dioxide/analysis , Hospitals , Humans , SARS-CoV-2 , Ventilation
20.
Open Forum Infect Dis ; 8(8): ofab328, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1370785

ABSTRACT

BACKGROUND: Health care personnel and patients are at risk to acquire severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in health care settings, including in outpatient clinics and ancillary care areas. METHODS: Between May 1, 2020, and January 31, 2021, we identified clusters of 3 or more coronavirus disease 2019 (COVID-19) cases in which nosocomial transmission was suspected in a Veterans Affairs health care system. Asymptomatic employees and patients were tested for SARS-CoV-2 if they were identified as being at risk through contact tracing investigations; for 7 clusters, all personnel and/or patients in a shared work area were tested regardless of exposure history. Whole-genome sequencing was performed to determine the relatedness of SARS-CoV-2 samples from the clusters and from control employees and patients. RESULTS: Of 14 clusters investigated, 7 occurred in community-based outpatient clinics, 1 in the emergency department, 3 in ancillary care areas, and 3 on hospital medical/surgical wards that did not provide care for patients with known COVID-19 infection. Eighty-one of 82 (99%) symptomatic COVID-19 cases and 31 of 35 (89%) asymptomatic cases occurred in health care personnel. Sequencing analysis provided support for several transmission events between coworkers and in 2 cases supported transmission from health care personnel to patients. There were no documented transmissions from patients to personnel. CONCLUSIONS: Clusters of COVID-19 with nosocomial transmission predominantly involved health care personnel and often occurred in outpatient clinics and ancillary care areas. There is a need for improved measures to prevent transmission of SARS-CoV-2 by health care personnel in inpatient and outpatient settings.

SELECTION OF CITATIONS
SEARCH DETAIL